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LETTER TO THE EDITOR 

Closed solution for the spatially homogeneous Kac’s model 
of the nonlinear Boltzmann equation 

H Cornille 
Service de Physique Thtorique, CEN-SACLAY, 91191 Gif sur Yvette, Cedex, France 

Received 4 January 1984 

Abstract. We find a closed spatially homogeneous solution of the nonlinear Kac’s model 
in 1+1 dimensions (velocity U and time t ) .  Choosing for the even velocity part of the 
distribution function the Bobylev-Krook-Wu mode, we add an odd velocity part. We find 
the possibility of the existence of the Tjon relaxation effect, when the time t is increasing. 
This depends on both the initial condition and the cross section. 

The well known Bobylev (1975), Krook and Wu (1976) solution (hereafter called 
BKW even mode) of the Boltzmann equation is a closed, non-trivial solution depending 
on u2 and t (velocity U and time t ) .  It is the product of a Maxwellian with time 
dependant width by a polynomial of the first order in U*. For the spatially homogeneous 
Kac’s model (Kac 1956, Uhlenbeck and Ford 1963) the BKW even mode was derived 
by Ernst (1979, 1981). Decomposing the distribution function f (  U, t )  into its even and 
odd parts with respect to U, f =f’+f-, it corresponds to f’. 

Some years ago Tjon (1979) discovered a very interesting effect. Let us define the 
reduced distribution function F (  U, t )  = f (  U, t ) / f (  U, CO). Then for large but fixed U, f 
increasing and going to infinity, f may relax to the Maxwellian distribution function 
(or F + 1) either in a monotonic way F S 1 or with an overpopulation at intermediate 
time where we have for these fixed u : F >  1, F-,  I f ,  t-oo. Equivalently when the 
effect exists (depending on initial conditions) it may produce at intermediate times a 
population of high velocity particles larger than the one present at initial time or at 
equilibrium. 

So depending whether or not this effect exists, we can define two classes of 
Boltzmann solutions. It was shown (Cornille and Gervois 1980) that the BKW even 
mode cannot exhibit this effect because necessarily F S 1 for Iu(’ higher than some 
fixed value. Due to this drawback, the BKW even mode cannot represent a general 
feature for the relaxation to equilibrium of the Boltzmann solutions. 

Our aim here is to introduce a non-trivial odd velocity part f-( U, t ) ,  where f’( U, t )  
is reduced to the BKW even mode, in such a way that the complete solution f’+f- is 
a closed one. As a supplement we investigate whether or not the Tjon effect can exist 
for the complete solution. The Kac’s model depends on the three variables U, t, and 
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where f( v )  means f( U, x,  t )  and a( e) is the cross section. We restrict ourselves to the 
spatially homogeneous case f = f( U, t ) .  We will find *that the existence of a closed 
complete f( U, t )  solution requires a condition for a( 6 )  (which was not the case for the 
BKW even mode) and the existence of the Tjon effects depends not only on the initial 
condition (macroscopic condition) but also on a further condition on a( e) (microscopic 
condition). In order to understand this surprising fact, it may be useful to recall recent 
results obtained for the stationary spatially inhomogeneous Kac’s distribution function 
f( U, x ) .  Firstly in that case if, as it seems reasonable, we assume a( 0) = a( T - e) then 
(Cornille et a1 1983) no closed similarity solutions for f (  U, x)  exist. Secondly if we 
do not assume a( e) = a( T- e) ,  then closed similarity solutions exist (Cornille 1983) 
but the moments 

+7r +* 
a2,,, = (COS e sin e)’”(+( e) d e  > 0 a0 = To I_, 7, = I_, (cos e ) m g ( e )  de  

(2) 

must satisfy well defined linear relations. When the complexity of the odd part augments 
then the number of linear relations also increases (Cornille 1984). In the f ( v ,  t )  case 
the assumption a( e) = a( T - e) decouples entirely the equations for f’ and f- leading 
for the odd part (Ernst 1981) to the trivial solution f-( U, t )  = e-?-( U, 0) without any 
link with the even part f’. Here we do not retain this special symmetry for a( 6 )  and 
deduce a closed complete solution where f- (the BKW odd mode) is the partner of the 
BKW even mode, but the moments a2, T ~ ,  73 of the cross section have to satisfy a linear 
relation. 

In order to find closed solutions we can use different methods: direct substitution 
of the ansatz solution into the integral equation or expansions with Laguerre poly- 
nomials. The Kac’s equations for f( v, t )  are 

+7r +cD 

s ~ + = l - ~  ..(e> I_, (f’(v’,t)f’(w’,t)-f+(v,t)f+(w,t))dwde (3a)  

&f-= 4 0 )  I-, (f-(v’, t) f’(w’,  t ) - f - (u ,  t)f++(w, t ) )  dw de. (36) 
‘T +m 

We seek solutions of the type 

Substituting (4) into (3) we find only one possibility n, = 1, n- = 0. In order that this 
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letter be self-contained we sketch briefly the determination of the BKW even mode 
(Krook and Wu 1979, Ernst 1981). In equation (3a)  we find a uZm polynomial such 
that the coefficients of u4,  U', uo are zero and furthermore we have the mass and 
energy conservations laws: J f  du = j  u'f du = 1. 

Integrating(5a) wefindao=tb' / ' (3-b),  a 2 =  b3l2(b-l ) ,  b=(1-ce-'2')-1. Substitut- 
ing the f', BKW even mode, into (3b) we obtain another polynomial with two terms 
U and u3.  We find two relations 

that we integrate taking into account the explicit expressions of a2, aO in terms of b 
and obtain the BKW odd mode 

U2 = 7 1  - 7 3  

Finally the complete BKW solution is 

Q , (  t )  = d b3l2eXp[ - ( T O -  T 1 ) f ]  TO = 1. (5b') 

v21 f ( v ,  t )  = e exp(-bv2/2) 
U d b y  exp[-(.r0- ~ , ) t ] +  b( b - 1)- 

J 2  2 

where b = [ 1 - c e-"2']-' and a( 0 )  must satisfy cro = 1, a( e )  # a( T - 0) and the moments 
relation a2 - 7, + T~ = 0. 

Firstly, we discuss the restrictions on a(0) .  We remark that if a( 0 )  = U ( T -  e ) ,  
then T ,  = T~ = 0, leading in equation ( 5 b )  to a, = e-' and b = constant; a trivial solution 
which is not linked to the BKW even mode. However it is very easy to construct cross 
sections satisfying the moments relation and a( e )  # a( T - e).  We give two examples: 
one with 6 distribution functions and another with smooth functions of 8: 

a(e)  = ;[(I +COS e,)(s(e - e,) + 6 (  e +  e,)) + ( I  -COS e,)(s(e- T +  e,) + s(e+ T -  e,))] 
(7a)  

where 0 < lcos ell < 1 is arbitrary, and 

U( e) = (57/ ( 16) ( I 7)) COS +e( 1 + $ COS e). ( 7 b )  

Secondly we discuss the positivity property of f ( u ,  t ) .  We require that the dis- 
criminant of the quadratic form in the bracket of equation (6) is not positive or 
(id2-[(2-3 c e-"2')/(1-c e-u2r)] c e x p L ( - ( ~ ~ + 2 ~ ~ - 2 ~ , ) f ] ) d O .  At t = O  this leads to  

c E]O,$[dE]-J i (J3-  l , , JZ( J3 -  1)[ d 2 d 2 c ( 2 - 3 c ) / ( l - c )  (8) 

and this is sufficient at t > O  too if we remark ~ T ~ - ~ T , - U ~ =  

Thirdly, we discuss the Tjon effect. On the one hand this effect depends on the 
initial conditions (macroscopic condition). In figure 1 we give an example c = 4, cr in 
(7b) with a weak odd part: d=-0.1; the relaxation to F =  1 is from below showing 
no Tjon effect. In another example, figures 2 and 3, c = 1/2,  cr belongs to (7a)  with 

1 U (   COS e ) ( i  -COS q 2 d e  > 0. 
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Figure 1. Plot of F ( u , r )  against U for d=-0.1, c = O . 5  and u(8) given by (76) .  

V 

Figure 2. Plot of F( U, t )  against U for d = -1, c = 0.5, cos 8,  = 0.93 and u( 0) given by (7a).  

cos Oi = 0.93, and a strong odd part d = -1, the effect exists for negative large U values 
(note if d = l  it would be for u > O  due to the symmetry d+-d,  U + - U ) .  On the 
other hand this effect depends on microscopic conditions on a( 0).  In figure 4 we show 
the relaxation for the same initial values as in figure 2: c = $, d = -1, (T of the equation 
( 7 a )  type but cos O1 = 0.5 and we see that no effect exists. Extending our analysis to 
the case where a(0) is given by equation ( 7 b )  and exploring the whole family of 
reduced distribution functions F (  U, t )  for all possible c, d values satisfying the conditions 
written down in equation (8) we never find the Tjon effect. 

A qualitative understanding of the effect can be obtained in the following way. 
Let us call u-(O) (u+(O)) the last negative (positive) zero of F(u, 0) - 1. When t 
increases two extreme cases can occur: ( i )  either u - ( t ) (  u + ( t ) )  does not move or moves 
slightly towards a finite limiting value, then for U < u-(co) ( U  > u+(co)) F =s 1 and no 
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Figure 4. Plot of F ( v ,  t )  against v for d = - 1 ,  c =0.5, cos 0, = O S  and u(0) given by (70). 

effect appears; or (ii) v,(t) or at least one of them goes to infinity and then large U 
values and corresponding times for which F 3 1 always exist and we have the effect. 
Of course the transition regime then occurs between two cases. In order to understand 
the different regimes which appear in figures 2 and 4 it is clearly necessary to interpolate 
other possible modes of relaxation between these two cases. We have calculated a set 
of different F (  U, t )  for the same initial condition c = $, d = -1. U (  0 )  belonging to (7u)  
but cos varying from 0 to 1. The interesting zero is v-( U+ if d = +l). For 0 <cos O1 < 
0.7 this zero does not move, near cos 8,  = 0.75 the zero begins to move and at 
cos el > 0.8 the zero is going to --CO. For 0.8 <cos O1 < 0.94 we observe the Tjon effect. 
However for cos O1 > 0.95 the zero slows down and the effect disappears. 
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Practically we say that the Tjon effect really exists if both the zero x - ( t )  (of F - 1 
for d < 0) is increasing not too slowly when t + 00 and the F > 1 values are substantially 
larger than one. 

One can prove that for the v values for which sign ( v d )  < 0, then the effect does 
not exist. For vd < 0, F is less than the contribution given by the BKW even mode 
alone (see equation (6)), and F 6 1 for 4 (Cornille and Gervois 1980). When 
the effect exists we do not have the reversed inequality F L 1 V v  V t  sufficiently large, 
but only for those J v J  less than the location of the above discussed zero lo+(t)l. Then 
we can check numerically that the zero is moving in a velocity interval large compared 
to the one where the distribution is significant at t = 0. For c =i, cos el = 0.93 and 
d = -1, -0.01 we find for the zero v - ( t ) :  ~ ( 0 )  = -2 ,  - 2 ,  ~ ( 2 5 )  = -6, -2.5, ~ ( 5 0 )  = 

Another method, for the study of the solutions of equation ( l ) ,  is the use of the 
Laguerre expansion. It turns out (Cornille 1983,1984) that the Laguerre polynomials 
are L;""), L:"'~' for f+ ,  v-'f- 

-14, -3.5, ~- (100)  L- -75, -16. 

2 

f + J i i r e ~ * ~ 2 = ~  L;1/2(+)(-1)nD:(x, t )  

and we formally find for the Laguerre moments: 

a,D;+a,(D:,,+D:) =I D4+Di-qEqnC4n 

E o n  = 72n+1- 70 Eqfl = f ( - l ) m C q m % ( n + m - q ) + l  ( lob)  

in equation ( loa ) ,  the RHS for n = 0 , l  are zero and correspond to conserved quantities. 
Now we restrict to the spatially homogeneous D,'(t) case. As the reader can easily 
check the BKW complete closed solution equation (6) is 

0 

0 

We can now discuss the Tjon effect in a semi-theoretical way. We use arguments, 
when an odd velocity part is present, similar to those of Hauge and Praestgaard (1981) 
for even velocity distribution alone. Let us define 0 = f ~ v '  as a scaling variable, 
substitute the solution equation (6') into the Laguerre expansion equation (9), retain 
the first Laguerre odd and even terms and put to zero terms independent of 0 (they 
vanish when t + CO). We obtain for the reduced distribution F (  v, t )  = F ( 0 ,  t )  a rough 
estimate 
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where a = T o - T 1 - ( T z / 2  =+ J u(e)( l  -COS  COS e-cos2 e )  dB is positive. If d =0, 
the odd contribution disappears and we recover the result for the BKW even mode. 
In order that the odd terms reverse the situation we see that we must require two 
conditions. 

(i) d sign U > 0 and at fixed c, Id/ be as large as possible, which means to include 
the largest possible odd component. This explains quite well the difference between 
figure 2, d = -1, c = 0.5, cos el =0.93 ( d  = -1 is the largest possible value) and other 
cases with the same c, cos e l ,  and d = -0.01, -0.1 where the zero x - ( t )  +a very slowly 
and the F > 1 values are very close to 1. 

(ii) a small and let us consider for a(6) the family ( 7 a ) :  then (Y = 
i(l -cos2 8,)(2-cos2 el) ,  a decreases when /cos ell increases and we recall that this 
is in accord with the phenomenological description given above. Further we want to  
explain the numerical result that exists for lcos ell a critical value for the displacement 
of the F -  1 zero. -If we look at a zero of F -  1 in equation (11) we find that 
( ldl /c’”)-( l~1~/4J2)  e(a-3az’2)r (1-6c/u2) must vanish and if we require that the 
location ot the zero increases when I u ~  increases we obtain a < ;az or T ~ -  T~ - 2a2 < 0 
or J a ( e ) ( l - c o s  ~ ) ( 1 - 2 c o s 2 ~ ( 1 + c o s  t!?))dB<O. Applying this result to the a(0) 
family equation ( 7 a )  where a -;a, = (1 - cos2 el)(  1 - 2c0s2 e,) we find that the zero 
can move for /cos ell larger than the critical value /cos e l /  = (h-’ = 0.707 which is a 
good result if we recall the crude approximation leading to equation (11). On the 
contrary for the case of figure 1 (a belonging to ( 7 b ) )  we have a -;az -- 0.24 > 0, in 
accord with the non-existence of the Tjon effect. 

In conclusion conditions on a( e )  and f-( v, 0) control respectively the displacement 
of the zero x - ( t )  (if d < 0) and the possibility of substantial F > 1 values. The best 
Tjon effect is obtained taking the most favourable conditions on both a( e )  andf-( U, 0). 

Finally one can ask the following question: is the BKW odd mode given here in 
equations (6)-(6’) the only non-trivial one that we can add to the BKW even mode? 
Let us give up the requirement of writing a closed solution. In equation ( lob )  we 
substitute the D i ( y )  given by equation (6’) and integrate. Then the D,(t) are 
recursively obtained once we know the set D i ( 0 ) .  We must first require that f ( v ,  0) 
(or D:(O)) is positive and second that the Laguerre series constructed with the D;( t )  
exist for all t values. We must also have a( 6) # a( 7r - 6) but may be no other very 
important conditions on a( e). We are investigating this problem. 

I thank Professor R Balian for discussions and Dr H J Herrmann for his interest. 
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